Skip to content

1

We are hosting STEM Friday this week, the gathering of children's books about Science, Technology, Engineering and Math. We are featuring two new books by Elizabeth Rusch, Eruption!: Volcanoes and the Science of Saving Lives, with photographs by Tom Uhlman and Volcano Rising, illustrated by Susan Swan.

volcano-rising-bigger

Children are definitely interested in natural processes like volcanoes, but perhaps too often children's books focus on the sensational, explosive aspects. Volcano Rising is a picture book for younger kids that explains not only what volcanoes are, but also how volcanoes can be a positive force by creating new land and adding nutrients to the soil. Rusch has created a two layer text, one layer that is meant to be read aloud with lots of action verb and sounds, and the other for those who want to really delve into what volcanoes are all about.

Susan Swan's mixed-media illustrations add another clue that this is a special book (see the cover above and an example at Charlesbridge). The illustrations give the look of a picture book, and also create a uniformity of scale and appearance that would not be possible with a collection of stock photographs.

Eruption-bigger

On the other hand, Eruption!: Volcanoes and the Science of Saving Lives (Scientists in the Field Series), is all about the blast. Written for ages 10 and up, this book follows the experiences of USGS volcanologist John Pallister and his team from of the Cascades Volcano Observatory as they participate in VDAP or the Volcano Disaster Assistance Program. VDAP is an international effort to provide assistance to any country impacted by volcanoes that asks for help in monitoring and predicting eruptions. The program was formed after the deadly eruption of Colombia’s Nevado del Ruiz in 1985.

Rusch reveals how VDAP works by closely following the heart-pounding, nail-biting events of the Mount Pinatubo volcano eruption in the Philippines. She shows the science of positioning and monitoring seismographs, determining  gas content and amount of ash, and even how satellite images can help predict when the next volcano will erupt. The case study also demonstrates that human responses to orders to evacuate are almost as unpredictable as the volcano itself.

Elizabeth Rusch has shown she has done her research and also that she is a versatile children's writer. Looking for information on volcanoes? Wanting to learn more about the science and scientists behind volcano eruption predictions? Elizabeth Rusch has the books for you!

Let's investigate some hands-on science activities inspired by the book:

1. Floating volcanic rock

Pumice rocks are lava from volcanoes that has cooled so quickly that they often contain pockets where air bubbles had been.

Gather:

  • Pumice and other igneous rocks, such as granite or obsidian.
  • Container
  • Water

Examine the rocks and predict whether they will float or sink. Fill the container with water and then place each rock in the water to see what happens.

If you can't do this in real life, try this virtual rock floating test at Science Kids.

For older kids, add a lesson about density.

2. The classic erupting volcano.

I almost skipped this one, because it is so overdone, but then realized that just because we adults find it has lost its novelty, doesn't mean kids who haven't done it should miss out.

a. Make a volcano cone.

This can be a simple as a mound of sand in the sandbox, or an elaborate cone made out of clay, paper mache, or a variety of other materials. Embed some type of container in the cone, such as a plastic bottle or cup to contain the reaction chemicals inside the cone.

b. Gather red and/or yellow food coloring (optional), baking soda and vinegar and some measuring containers. If you have a group of kids, go for the mega-store sizes, because you will be doing this again and again.

c. Have the children measure some baking soda into the container at the center of the cone. The amount will depend on how big your container is. You can adjust after you try it a few times. Add the a few drops of each food coloring to give an orange lava color. When you are ready pour the vinegar into the container with the baking soda. Be prepared to jump back if necessary.

This video shows an example. Science Bob suggests adding dish detergent to the mix, for more foaming action. Although he says to pour in the "water," I think it is probably vinegar. Of course you can try it with water, too, just to see if it works.

 

 

Now I'm going to share our family's top secret volcano formula. Instead of baking soda and vinegar, we use elephant's toothpaste. The reaction is slower, but lasts longer and gives off real heat!

Do you have another way to dress up the standard volcano eruption demo?

Need pumice? You can find pumice at rock shops, some science educational supply catalogs and even online at Amazon:

 

Disclosures: Volcano Rising was supplied by the publisher for review. Eruption was from our local public library. I am an affiliate for Amazon, and if you click through the ad and make a purchase, I will receive a small commission at no extra charge to you. Proceeds will be used to maintain this self-hosted blog, as well as to buy more vinegar and baking soda 🙂

 

Come visit the STEM Friday blog each week to find more great Science, Technology, Engineering and Math books.

Once children have begun to be aware of how important water is to our planet and to living things, it is time to investigate how water recycles.

the-water-cycle

Our post today was inspired byWater Cycle (Pebble Plus: Earth and Space Science) by Craig Hammersmith, which is a picture book that introduces many important concepts and vocabulary words pertaining to the water cycle, such as evaporation, condensation and precipitation. Along with a glossary and an index, there are instructions for making a "mini-earth" in the form of a terrarium. (A review copy of this book was provided by the publisher, Capstone.)

The first step to understanding the water cycle in understanding the states of matter. Water is an ideal substance to study because it exhibits three of the four states of matter (solid, liquid, gas) at relatively normal temperatures.

Solid Water (ice, hail, snow):

Gather:

  • Plastic tubs of different sizes, food molds, ice cube trays, clean milk cartons, etc.
  • Access to freezer
  • Water
  • Food coloring (optional)
  • Spray bottle (optional)
  • Springs of herbs, flower petals (optional)

Put some water in different-shaped containers and freeze it. Allow the children to help pick containers and fill them. For added enjoyment, add a few drops of food coloring to the water. Or you can add bits of edible flowers such as roses, or leaves of herbs as decorations. Explain that the liquid water is going to become solid.

On a warm day, take the ice outside and use it to build ice sculptures. Remove the ice from the containers by briefly immersing in water if it won’t just slip out. If you don’t have time to make special shapes, simple ice cubes can work great for this, too.

Have the children pile the ice to make buildings, animals or abstract forms. You can lightly mist the finished products with water containing food coloring. Then watch the sculptures melt. Predict how long it will take. Explain that the solid water is becoming liquid water by melting.

Older children can design inventions to protect the ice from melting, and then build and test their invention by seeing how long it takes for the ice to melt inside the device versus unprotected.

(See a previous post about snow science, too.)

icicles

 

Liquid Water:

Learning how to make a water siphon is a fun and useful way to learn about some of the properties of liquid water.

Gather:

  • Small amount of tubing, such as clear plastic aquarium tubing - about 18 to 24 inches long
  • Water
  • Two bowls or other containers large enough to hold tubing submerged, or even a large glass and a sink
  • Food coloring (optional)

Fill one of the containers with water. Add a few drops of food coloring (optional). Submerge the tubing under the water and jiggle to remove air bubbles until the tube is filled with water. Place your thumb tightly over one end of the tube and move it to an empty container, ideally slightly lower than the first. Release your thumb and the water should start moving from the filled bowl to the empty one via siphon action. It may take some practice if you have never done it before.

You can also put two straws together to use instead of tubing, as shown in the first video (Note: there is a pop-up ad):

 

The video below by Doctor C shows how a siphon works using a chain model. (Note:  The narrator takes a sip of the water at the end. You might want to turn the video off before you reach that point to prevent copycat behavior.)

 

For older children, time how long it takes to fill a container of known size and calculate rate of flow. Figure out how long it would take to empty a ten gallon fish tank with your siphon. How about an average swimming pool?

pool-water-texture

(Pool Water Texture by Petr Kratochvil)

Water as a Gas
:

To study water in the gas form, you will need water, paint brushes and a sidewalk or driveway on a hot day. If you must stay indoors, a chalkboard will work too. Simply paint the water onto a flat surface and then time how long it takes to evaporate. Explain that the liquid water is turning into a gas as it disappears and is rising up into the air. That is called evaporation.

To show the gas water turning back into liquid, set out a glass full of ice water on a warm day. The gas should condense into liquid around the outside of the glass after a few minutes, creating droplets. This is called condensation.

Water_cycle

The USGS has child-friendly information about the water cycle, including a printable poster.

If you would like to make a terrarium as a model of a water cycle, see our previous post.

See how a man kept a plant in a bottle for years without adding water or air (Note:  website has numerous ads and images that might not be child-appropriate).

You could spend a lifetime studying water. Next week we're going to find out where the the water in your home faucet comes from and how it gets to the tap.

Water Cycle (Pebble Plus: Earth and Space Science) by Craig Hammersmith

Age Range: 4 and up
Publisher: Capstone Press (August 1, 2011)
ISBN-10: 1429671424
ISBN-13: 978-1429671422


Disclosures: The book was provided for review purposes. Also, I am an affiliate for Amazon. If you click through the linked titles or ads and make a purchase, I will receive a small commission at no extra charge to you. Proceeds will be used to maintain this self-hosted blog.

 

Come visit the STEM Friday blog each week to find more great Science, Technology, Engineering and Math books.

NASA image courtesy MODIS Rapid Response Team at NASA GSFC. Caption by Michon Scott.

Ever watched the weather report and wondered what it would be like to be a meteorologist? Here’s a fun way to learn about the weather and try out being weather scientist at the same time:  Dress up as a meteorologist and give a pretend weather report.

Gather:

  • a camcorder/video camera
  • poster paper and markers to make weather maps
  • local weather information
  • dress up clothes

Step 1. Do some research about meteorologists and what they do.

Did you know meteorologists stand in front of a green screen (called a chrome-a-key) and point to weather fronts by looking in a nearby monitor? The Weather Wiz Kids website has information about Becoming a Meteorologist.

2. Learn how to read a weather map and prepare a weather report. Kids Online Resource (KidsOLR) has a Meteorology page with tons of weather links to help with your research (this page does have Google ads at the top). You can use the weather words list below to get you started, too.

3. Make posters showing cold fronts, warm fronts, the current weather conditions, and the local weather forecast.

4. Dress up like you are going to be on television. Then have a friend or family member take a video of you presenting the weather.

Extension:  Some television stations have tours or information days. Check to see if you can visit one of your local meteorologists to learn more.

Weather Words:

  • air mass - air moving in large blocks
  • atmosphere - the blanket of air that encircles the earth. It is a mixture of gases, liquids and fine solids. Living things can also be found in the atmosphere, such as algae, bacteria and fungi. The atmosphere contains 78% nitrogen and 21 % oxygen.
  • blizzard - heavy snow with high winds, 35 mph or faster
  • cloud classification -clouds are classified by shape and height and given names such as cumulus, cirrus, stratus, etc.
  • condensation - process of water vapor changing into a liquid
  • dew point - temperature at which air becomes saturated with water vapor and condensation occurs (keep in mind that warm air holds more water vapor than cool air)
  • drizzle - fine precipitation with water droplet sizes smaller than rain
  • evaporation - changing liquids into vapor or gas at temperatures lower than the boiling point
  • flood - water levels rising above normal, often quickly
  • fog - technically a very low-lying cloud
  • fronts, cold front - cold air mass approaches warm air mass and lifts it
  • warm front - warm air meets cooler air and rises over it
  • hail, hailstones - chunks of ice produced by updrafts in thunderstorms
  • humidity - amount of water vapor in the air
  • hurricane -large-scale, violent wind and rain storm that forms in the Atlantic Ocean.
  • isobar - line drawn on a weather map to indicate points of equal air pressure
  • isotherm - line drawn on a map to connect points of equal temperature
  • jet stream-  a fast-moving river of air high in the atmosphere
  • lightning - huge electrical charge forming during storms
  • meteorologist - person who studies weather
  • monsoon - heavy rain resulting from a prevailing seasonal wind pattern
  • nimbus - dark clouds full of water vapor
  • precipitation - water falling from clouds
  • relative humidity - amount of water vapor in the air compared to the amount needed for saturation at that temperature
  • shower - brief period of precipitation
  • sleet - snow that melts in the air and then refreezes as pellets
  • snow - ice crystals that form in clouds and fall to earth
  • sun - the star that is at the center of our solar system
  • temperature - amount of hotness or coldness as measured by the kinetic energy of the atoms or molecules
  • thunder - lightning passing through air causes a shock wave heard as the loud noise called thunder
  • tornado - violently rotating column of air
  • typhoon - large-scale, violent wind and rain storm that forms in the Pacific Ocean
  • wind -moving air

If you like your video and upload it, be sure to send us a link.

Looking for more information about weather? See our growing list of weather children's books at Science Books for Kids.

Weather-books-for-kids